

St Robert of Newminster

Catholic School and Sixth Form College

Numeracy Across the Curriculum and Methods for Mathematics

A Guide for Parents

Table of Contents

Introduction 3
Useful Websites 4
Worded Problems. 5
Graphs. 6
Calculations 7
Addition and Subtraction 7
Multiplication 7
Division - "The Bus Stop Method" 9
Ordering Decimals 10
Negative Numbers 10
Order of Operations (BIDMAS) 11
Fractions, Decimals and Percentages 12
Key conversions 12
Fraction Conversion 13
Decimal Conversion 14
Percentage Conversion 14
Percentage of an Amount 15
Expressing as a Percentage 16
Percentage Change (Profit and Loss) 16
Working with Fractions 17
Addition and Subtraction 17
Multiplication 18
Division 18
Mixed Number to Improper Fraction 18
Improper Fraction to Mixed Number 18
Fraction of an Amount 19
Simplifying Fractions 19
Expressing an Amount as a Fraction 19
Rounding 20
Nearest 10, 100, 1000, whole number (integer) 20
Nearest Decimal Place 21
Significant Figures 22
Estimation 22
Area and Perimeter 23
Metric and Imperial Conversion 24
Time 25
Algebra 26
Key Vocabulary 26
Collecting Like Terms 27
Expanding Brackets 27
Factorising Linear Expressions 28
Solving Equations 29
Sequences 30
Ratio and Proportion 31
Unitary Method 31
Simplifying Ratio 31
Ratios and Fractions 31
Ratio problems - "Ratio Reality and the Bar Model" 32
Key Terminology and Command Words 35

Introduction

At St. Robert's School, we understand the important role that parents and carers can play in helping their child to develop confidence within applying numeracy and mathematics skills across all subjects and in daily life.

Numeracy skills are used in almost every subject that pupils learn at school, in some form, and are vital to helping them build a successful future beyond their school years. It is imperative that pupils leave school with numeracy skills that can help them in their daily life. Some of the most important examples of this include maintaining a good job and dealing with home-owner responsibilities, such as paying bills and finding the best deals. According to the National Numeracy Organisation, better numeracy skills are linked to improved health and wellbeing, as well as better employment and higher wages. Workplaces name numeracy skills as being one of the most common skills gaps in their employees. It is therefore crucial that every child can develop the confidence to tackle numerical problems with a positive attitude. We appreciate the important role that you may play in helping to develop this confidence and engagement to apply numeracy to their learning in a range of different contexts.

Here at St. Robert's, we want parents and carers to feel confident in helping your child with maths at home. We are fully aware that some methods that may have been used when you were taught mathematics may be different to those that your child uses. With this in mind, we have created this booklet with a range of common methods and approaches that we use to teach mathematics at St. Robert's. We hope that this can help you to support your child with applying their numeracy skills in whichever subject it may be needed.

Thank you for your ongoing support in helping your child to achieve their potential and develop the important numeracy skills and positive approach needed for their future endeavours.

St. Robert's Mathematics Department

Useful Websites

2. Corbettmaths

Welcome Videos and Worksheets Primary 5-a-day \downarrow More \vee Revision Cards

Welcome

Tưdo

ค OTM

This is a fantastic website with videos that explain the knowledge needed for each topic taught in the maths curriculum, with fully worked examples. There are also worksheets with worked answers for extra practice.

Worded Problems

In maths, one of the most common areas that pupil express difficulty with is worded problems. Below is a mnemonic of a systematic approach that pupils should follow when tackling these types of questions.

Read - have you read the worded question?

Understand and underline - have you understood the question and highlighted the key words or figures?

Choose and calculate - choose the correct operation ($+,-, \mathrm{x}, \div$) and convert the key words into numbers or maths symbols.

Solve - can you solve the calculation, showing your working out?

Answer - write your answer clearly, in a full sentence if needed and make sure you include the units in your answer (e.g. cm)

Check - check that your answer is reasonable and if possible, substitute it back into the original question to check.

Graphs

When working with any type of graph, it needs to be clear and fit for purpose. Below is a mnemonic to help pupils check whether their graphs are of good quality.

Scale - does your graph have a clear, suitable, accurate unbroken scale on both the horizontal and vertical, with even increments?

Axes - are the axes showing the correct information with a suitable scale (are the x and y axes the correct way around)?

Label - are both axes labelled correctly, including units?

Title - does the graph have a meaningful title that explains the graph?

Example of a graph used in Geography

Average flow velocity rate of a river.

Calculations

Addition and Subtraction

We carry "on the doorstep".

If the bottom number is bigger than the top number, then we need to "borrow".

Multiplication

There are three different methods that students might use, depending on preference.

Method 1 - Column method

Work out 23×5
Work out 23×15

2
3

	15
115	

	2	3	
	1_{1}	5	
1	1	5	
2	3	0	+
3	4	5	

Working with decimals

When multiplying with decimals using this method, we remove the decimals and then replace them after we have done the calculation.

For example, work out 0.23×0.5
First remove the decimals. We now have 23×5, which we know is 115 .
The original question had 3 digits after the decimal point altogether, so our answer needs 3 decimal places too.

So $0.23 \times 0.5=0.115$

Method 2-Grid method

Work out 23×5

x	20	3
5	100	15

1	0	0
	1	5
1	1	5

$23 \times 5=115$

Work out 23×15

x	20	3
10	200	30
5	100	15

$200+100+30+15=345$
so $23 \times 15=345$

Working with decimals

When multiplying with decimals using this method, we remove the decimals and then replace them after we have done the calculation.

For example, work out 0.23×0.5
First remove the decimals. We now have 23×5, which we know is 115 .
The original question had 3 digits after the decimal point altogether, so our answer needs 3 decimal places too.

So $0.23 \times 0.5=0.115$

Method 3 - Lattice Method

Working with decimals

Division - "The Bus Stop Method"

No remainder:
With remainder:
$750 \div 3$
$750 \div 4$
250
$3 \quad 7{ }^{1} 50$
$4 \begin{gathered}187.5 \\ 7^{3} 5^{3} 0 \cdot{ }^{2} 0\end{gathered}$

Ordering Decimals

Order these from smallest to largest.
8.1
8.12
8.01
8.305
8.2

Line up the place value of the digits and add zeros so they all have the same number of decimal places.

8	\cdot	1	0	0
8	.	1	2	0
8	\cdot	0	1	0
8	.	3	0	5
8	.	2	0	0

Work your way across the place value columns from left to right to arrange the values from smallest to largest.
Answer:
8.01
8.1
8.12
8.2
8.305

Negative Numbers

$$
\begin{array}{ccc}
++ & \rightarrow & + \\
-- & \rightarrow & + \\
+- & \rightarrow & - \\
-+ & \rightarrow & -
\end{array}
$$

$$
\begin{aligned}
& 2+-3=2-3=-1 \\
& 2--3=2+3=5 \\
& 2 x-3=-6 \\
& -18 \div-6=+3
\end{aligned}
$$

Find the difference between $-2^{\circ} \mathrm{C}$ and $8^{\circ} \mathrm{C}$. Use a number line.

Order of Operations (BIDMAS)

The order in which calculations are carried out is referred to as BIDMAS (or also sometimes called BODMAS).

Brackets

Indices

Division

Multiplication

Done in order from left to right (like reading a sentence).

Addition
Subtraction
Done in order from left to right (like reading a sentence).

Work out the value of $5 \mathrm{x}(12-5)+3^{2}$.

$$
\begin{gathered}
5 \times(12-5)+3^{2} \\
=5 \times 7+3^{2} \\
=5 \times 7+9 \\
=35+9 \\
=44
\end{gathered}
$$

Note here we have addition and subtraction, which is done from left to right.
$10-3+2$
$=7+2$
$=9$

Fractions, Decimals and Percentages

Key conversions

Fraction	Decimal	Percentage
$\frac{1}{10}$	0.1	10%
$\frac{1}{8}$	0.125	12.5%
$\frac{1}{5}$	0.2	20%
$\frac{1}{4}$	0.25	25%
$\frac{1}{3}$	$0.333 \ldots$	$33.333 \ldots \%$
$\frac{1}{2}$	0.5	50%
$\frac{2}{3}$	$0.666 \ldots$	$66.666 \ldots \%$
$\frac{3}{4}$		

Fraction Conversion

Convert $\frac{3}{8}$ to a decimal and a percentage.

$$
\begin{aligned}
& 0.375 \\
& \cline { 2 - 2 } 3 \\
& 3 \cdot 0^{6} 0^{4} 0
\end{aligned}
$$

$$
0.375 \times 100=37.5 \%
$$

Convert it to a decimal first using the bus stop method.

To convert it to a percentage, multiply by 100 . The digits move two places to the left.

Decimal Conversion

Convert 0.3 to a fraction and a percentage.

H T U . Tenths

0 . 3

We have three tenths, which is written as $\frac{3}{10}$.

To convert to a percentage, we multiply the decimal by 100.
$0.3 \times 100=30 \%$

Convert 0.125 to a fraction and a percentage.

H T U . Tenths Hundredths Thousandths

0 . 1 2 5

We have one hundred and twenty five thousandths, which is written as

$$
\frac{125}{1000}=\frac{1}{8}
$$

To convert to a percentage, we multiply the decimal by 100.
$0.125 \times 100=12.5 \%$

Percentage Conversion

Convert 25% to a fraction and a decimal.
25% is 25 "per cent", which is written as $\frac{25}{100}$. This simplifies to $\frac{1}{4}$.
To convert from a percentage to a decimal, divide by 100 .

$$
25 \div 100=0.25
$$

Percentage of an Amount

Percent	How to work it out
50%	Halve the quantity
25%	Quarter the quantity (halve then halve again)
10%	Tenth (divide by 10)
5%	Find 10% then halve it
1%	Hundredth (divide by 100)

Non-Calculator Method

To find 63% of 200 without a calculator:
50% of $200=100$
10% of $200=20$
1% of $200=2$
3% of $200=6$
So $63 \%=50 \%+10 \%+3 \%$

$$
=100+20+6
$$

$$
=126
$$

To increase 200 by 63%, we find 63% and add it on to the 200 .
$200+126=326$

Calculator Method

To find 63% of 200 with a calculator:
We know $63 \%=0.63$ as a decimal.
$200 \times 0.63=126$

To increase 200 by 63\%:
We start with 100% of the original value. We add on 63%, so we end up with 163%.
163% as a decimal is 1.63
$200 \times 1.63=326$

Expressing as a Percentage

Express 5 as a percentage of 20.

$$
\frac{5}{20}=0.25=25 \%
$$

Alternatively, we could have done the following:

$$
\frac{5}{20}=\frac{25}{100}=25 \%
$$

Percentage Change (Profit and Loss)

$$
\text { Percentage Change }=\frac{\text { difference }}{\text { original value }} \times 100
$$

A coat originally cost $£ 30$ and now costs $£ 25$. Find the percentage reduction in the sale.

Percentage change $=\frac{£ 40-£ 25}{£ 40} \mathrm{x} 100$

$$
\begin{aligned}
& =\frac{15}{40} \times 100 \\
& =37.5 \%
\end{aligned}
$$

A car that cost $£ 3500$ to buy is sold for $£ 5000$. Work out the percentage profit.

$$
\begin{aligned}
\text { Percentage change } & =\frac{£ 5000-£ 3500}{£ 3500} \times 100 \\
& =\frac{1500}{3500} \times 100 \\
& =42.9 \%
\end{aligned}
$$

Working with Fractions

Addition and Subtraction

Example 1 - Same denominators

Example Find $\frac{3}{7}+\frac{2}{7}$
These have the same denominators so we just add their numerators - we don't add or subtract the denominators

$$
\frac{3}{7}+\frac{2}{7}=\frac{3+2}{7}=\frac{5}{7}
$$

Example 2 - Different denominators

$$
=\frac{7}{24}
$$

Another method is the "butterfly" or "kiss and a smile" method. Multiply the denominators and cross multiply the wings.

Butterfly Method for Fractions (Addition \& Subtraction)

$$
\frac{3}{7}+\frac{5}{2}=\frac{41}{14}
$$

Multiplication

Multiply across the top and multiply across the bottom.

$$
\frac{2}{3} \times \frac{5}{9}=\frac{10}{27}
$$

Division

We use the mnemonic KFC.
Keep the first fraction osit is
Flip the second fraction upside down
Change the \div sign to a \times sign
$\frac{11}{12} \div \frac{3}{7}=\frac{11}{12} \times \frac{7}{3}=\frac{11 \times 7}{12 \times 3}=\frac{77}{36}$

1) Keep the first fraction the same
2) Flip the $2^{\text {nd }}$ fraction
upside down
3) Change the \div sign to axsign

Mixed Number to Improper Fraction

Improper Fraction to Mixed Number

Convert $\frac{11}{4}$ to a mixed number.
Method: How many times does 4 divide into 11?
4 divides into 11 exactly 2 times with a remainder of 3 .
So $\frac{11}{4}=2 \frac{3}{4}$

Fraction of an Amount

Find $\frac{2}{3}$ of 15 .
Find one third first by dividing 15 by 3 , which equals 5 .
We want two thirds, so multiply by 2.
$5 \times 2=10$.
Hint: "Divide by the bottom and multiply by the top".

Simplifying Fractions

Fully simplify $\frac{36}{48}$

Expressing an Amount as a Fraction

Express 6 days as a fraction of 2 weeks.
First, ensure that the units are the same. 2 weeks is equivalent to 14 days.

$$
\frac{6 \text { days }}{2 \text { weeks }}=\frac{6 \text { days }}{14 \text { days }}=\frac{6}{14}=\frac{3}{7}
$$

Rounding

Pupils are taught the rules:
" 5 or more" rounds the digit up to the next value.
" 4 or less" makes the digit stay the same.

Nearest 10, 100, 1000, whole number (integer)

Example 1

Round 17 to the nearest ten.

Underline the place value column that you are interested in rounding the number to. Put an arrow to the digit to the right of it.

The 7 is " 5 or more" so it tells the 1 in the tens to move up to a 2 , so it is now worth twenty. Fill the units with a zero as a place holder.

Answer: 17 rounded to the nearest 10 is 20.

Example 2

Round 230 to the nearest hundred.

230 rounded to the nearest 100 is 200.

Example 3

Round 56890 to the nearest thousand.

Ten thousands	Thousands	Hundreds	Tens	Units
5	6	8	9	0

The 8 is " 5 or more" so it tells the 6 to move up to a 7 ". Fill the columns to the right of the 6 with zeros as place holders. The 5 remains
56890 rounded to the nearest 1000 is 57000 . untouched.

Example 4

Round 3.1 to the nearest whole number.
Units Tenths
\qquad . 1
\uparrow
The 1 is " 4 or less" so it tells the 3
to stay the same.
3.1 rounded to the nearest whole number is 3 .

Nearest Decimal Place

You start counting decimal places from the first digit after the decimal point.

	$\mathbf{1 s t}^{\text {st }}$ d.p,	$2^{\text {nd }}$ d.p,	$3^{\text {rd }}$ d.p,	$\mathbf{4}^{\text {th }}$ d.p,	$5^{\text {th }}$ d.p,
9	1	2	3	4	5

Example 1

Round 3.15 to the nearest one decimal place (nearest tenth).

The 5 is " 5 or more" so it tells the 1 to move up to a 2 ". The 3 remains untouched.
3.15 rounded to one decimal place is 3.2

Example 2

Round 3.152 to the nearest two decimal places (nearest hundredth).

The 2 is " 4 or less" so it tells the 5 to stay the same. The 3 and the 1 remain untouched.

Significant Figures

The first significant figure (s.f.) is the first non-zero digit. The $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ etc s.f. can be a 0 . You start counting from the $1^{\text {st }}$ significant figure.

Example 1

Round 5840 to one significant figure.

The first non-zero digit from the left is the 5 . The 8 tells the 5 to move up to a 6 . Replace everything else with zeros. It rounds to 6000.

Example 2

Round 0.00506 to two significant figures.
0.00506

The first non-zero digit from the left is the 5 , which is the first significant figure. The second significant figure is the 0 . The 6 tells the 0 to move up to a 1 . It rounds to 0.0051

Estimation

Estimation can be used to approximate calculations or to check answers. We usually round each value to one significant figure before completing the calculation.

Example

Estimate 473×56.
473 rounded to one significant figure is 500 .
56 rounded to one significant figure is 60 .
So the estimated calculation is $500 \times 60=30,000$

Area and Perimeter

Area is the square units needed to "fill" the inside of the shape.

The method for working out area depends on the shape.

Shape \quad Name | Formula for Area |
| :---: |
| Square |
| Base \times Height |

Perimeter is the distance around the outside of the shape. We add all of the side lengths together.

Metric and Imperial Conversion

LENGTH

Metric

1 centimetre (cm) $=10$ millimetres (mm)
1 metre $(\mathrm{m})=100 \mathrm{~cm}$
1 kilometre $=1000 \mathrm{~m}$
Imperial
1 foot = 12 inches
1 yard $=3$ feet
1 mile $=1760$ yards

Metric/Imperial
1 inch $\approx 2.54 \mathrm{~cm}$
5 miles $\approx 8 \mathrm{~km}$

MASS

```
Metric
1 gram (g) = 1000 milligrams (mg)
1 kilograms (kg) = 1000g
l tonne = 1000 kilograms
Imperial
1 \text { pound (lb) = 16 ounces (oz)}
l stone= 14 lb
1 ton=2240 lb
```

 Metric/Imperial
 \(1 \mathrm{~kg} \approx 2.2 \mathrm{lb}\)

CAPACITY

```
Metric
l litre = 1000 millilitre (ml)
1 litre = 100 centilitres (cl)
l centilitre = 10 millilitres
Imperial
l gallon = 4.5 pints
```

Metric/Imperial
1 litre $=1.75$ pints

Time

If I leave the house at 11:15am and arrive at my destination at 12:27pm, how long did the journey take me?

Use a timeline:

$$
+45 \text { minutes } \quad+27 \text { minutes }
$$

11:15am
12pm
12:27pm

Time taken $=45+27=72$ minutes (or 1 hour and 12 minutes).

Algebra	
Key Vocabulary	
Constant	Something that does not vary, e.g. in $3 x+2$, the constant is 2 (it never changes value).
Coefficient	The number attached to a variable, e.g. $5 x$. The coefficient is the 5 and the variable (which can take any value) is x.
Expand	Multiply across all terms in the bracket to remove the brackets. E.g. $5(x+2)$ would expand to $5 x+10$.
Expression	A collection of letters and numbers to express a quantity. An expression does not contain an equals sign. e.g. $3 x+2$.
Factorise	An expression that is equal to something, which can be be solved to find the value. e.g. the equation $3 x+2$ solution of $x=4$.
Formula can be solved to give a	

Collecting Like Terms

Simplify $3 x+2 y+7-x+6 y-2$.

$$
3 x+2 y+7-x+6 y-2
$$

Students are usually taught to use the boxes and circles or underline method to highlight which terms are alike (i.e. which have x, which have y and which may be just a constant (a number by itself).

$$
\begin{gathered}
3 x+2 y+7-x+6 y-2 \\
=2 x+8 y+5
\end{gathered}
$$

A common mistake here is to put -5 because pupils have seen +7 and -2 and think " a negative and a positive make a negative". However, if we use a number line to work out $+7-2$, the answer is (positive) 5 .

Expanding Brackets

Most pupils will use the "Santa's Hat" method. We multiply the term outside the bracket by everything inside the bracket.

Expand $5(3 x-1)$.

$5 \times 3 x=15 x$
$5 x-1=-5$

$$
5(3 x-1)=15 x-5
$$

Some pupils may use a grid method instead.

x	$3 x$	-1
5	$15 x$	-5

$$
5(3 x-1)=15 x-5
$$

Factorising Linear Expressions

This is the inverse of expanding brackets. Here we want to put the brackets back in. Factorise $15 x-5$.

Step 1: Find the highest common factor of 15 and 5 , which is 5 . So we now put the 5 outside the bracket.

$$
5(\ldots \ldots)
$$

Step 2: Looking at the first term, what do we multiply 5 by to get the $15 x$? Answer: $3 x$
Looking at the second term, what do we multiply 5 by to get -5? Answer: -1 .
So $15 x-5=5(3 x-1)$
Some pupils may use a grid method instead and work backwards to fill in what would go in the first row and column (shown in red). The first step would still be to find the highest common factor of 15 and 5 , which is 5 and the process for step 2 also follows the same method as above.

x (multiply)	$3 x$	-1
5	$15 x$	-5

$$
15 x-5=5(3 x-1) .
$$

Below is an example where both a number and letter are common.
Factorise $15 x^{2}-10 x$.
Step 1: Find the highest common factor of 15 and 10 , which is 5 . So we now put the 5 outside the bracket. There is also a letter x common so we can also put x outside the bracket.

$$
5 x(\ldots \ldots \ldots)
$$

Step 2: Looking at the first term, what do we multiply $5 x$ by to get the $15 x^{2}$? Answer: $3 x$
Looking at the second term, what do we multiply $5 x$ by to get $-10 x$?
Answer: - 2 .
So $15 x^{2}-10 x=5 x(3 x-2)$.
Alternatively, using the grid method, following step one above:

x (multiply)	$3 x$	-2
$5 x$	$15 x^{2}$	$-10 x$

Solving Equations

When solving an equation, we are aiming to find which value of the letter makes it "true". We use the inverse operations balance method, which means we want to undo what has happened to the letter to be able to work out what it is worth. Pupils know "whatever we do to the left, we have to do to the right".

$$
\begin{gathered}
3 x+1=13 \\
-1 \\
3 x=12 \\
\div 3 \quad \div 3 \\
x=4
\end{gathered}
$$

To get rid of the +1 , we subtract one from both sides of the equation. Then to get rid of the multiply by 3 , we divide both sides by 3 . We show the steps underneath in red as our method.

We can check our answer is correct by substituting the 4 back into the original question. Does $3 \times 4+1=13$? The answer is yes, so my answer is correct.

We can also solve when there is a letter on both sides. Our first aim is to "get rid" of the smallest value of x. We get rid of the $2 x$ by subtracting $2 x$ from both sides.

$$
\begin{gathered}
6 x-5=2 x+23 \\
-2 x \quad-2 x \\
4 x-5= \\
+5 \quad+5 \\
4 x= \\
4 x \\
\div 4 \\
\div 4 \\
x=7
\end{gathered}
$$

Again, we can check our answer by substituting the 7 back into the original question.

Sequences

Find the nth term of the following linear sequence: $2,6,10,14$.

Find the difference between each term. This goes in front of n. $4 n$ Jump back from the first term by this amount. This goes on the end of the nth term expression.
nth term $=4 n-2$

Ratio and Proportion

Unitary Method

This method is used to find the "unit price" or unitary cost of an item to help work out any required amount.

A bag of 5 oranges costs $£ 1.75$. How much would 8 oranges cost at the same price each?

Simplifying Ratio

Simplifying a ratio is similar to simplifying a fraction. We keep dividing by a common factor. Note that we don't always divide by 2 (pupils often assume this) and we never have decimals in a ratio as a general rule.

Ratios and Fractions

The ratio of apples to bananas is 2:3.
There are $2+3=5$ parts in the total ratio. So $\frac{2}{5}$ are apples.
Therefore $\frac{3}{5}$ of them are bananas.

The fraction of sweets in a bag that are red is $\frac{1}{4}$ and the rest are yellow. Write down the ratio of red to yellow. It helps to draw a picture here.

Using the visual, it is clearer that the ratio of red to yellow is 1:3.

Ratio problems - "Ratio Reality and the Bar Model"

To solve ratio problems, pupils may use a range of approaches. Some methods include using bar models or "ratio-reality" tables.

Share $£ 50$ in the ratio 2:3.

Method 1: Ratio Reality Tables

Ratio (what are the numbers in the ratio?)	A	B	Total
Reality (in real life, what would they get?)	$2 \times 10=£ 20$	$3 \times 10=£ 30$	$2+3=5$

Answer: Person A gets $£ 20$ and person B gets $£ 30$.

Method 2: The Bar Model

Share $£ 50$ in the ratio 2:3.

A

B

Total

$=£ 50$
so

So A gets £20 and B gets £30.

It may be where we are told how much one person has, rather than the total.
A and B share money in the ratio 2:3. Person A gets $£ 40$. How much did they share in total?

Method 1: Ratio Reality Tables

A	B	Total	
Ratio (what are the numbers in the ratio?)	2	B x This is the	3

Total $=£ 100$

Method 2: The Bar Model

A and B share money in the ratio 2:3. Person A gets $£ 40$. How much did they share in total?

A

B

A gets £40, so \square $=£ 40$
so

$$
\square=£ 20
$$

A

£20	£20	
£20	£20	£20

So A gets $£ 40$ and B gets $£ 60$, so altogether they share $£ 100$.

It may be where we are told the difference, rather than the total. This may appear in the question as "Person A gets more or less than person B, for example. In this case, we change the "total" column to a "difference" column.
A and B share money in the ratio 2:3. Person A gets $£ 20$ less than Person B. How much did Person B get?

Method 1: Ratio Reality Tables

A	B	Difference			
Ratio (what are the numbers in the ratio?)	2	3	$3-2=1$		
Reality (in real life, what would they get?)	$2 \times 20=£ 40$	$3 \times 20=£ 60$	$£ 20$		This is the "ne part" of the ratio.
:---:					

Answer: Person B gets £60.
Check: is the difference between A and B actually $£ 20$? £60-£40 = £20 so yes, we are correct.

Method 2: The Bar Model

A and B share money in the ratio 2:3. Person A gets $£ 20$ less than Person B. How much did Person B get?

A

B

A gets one square less than B (the difference between A and B is one square), so

A
B

	$£ 20$	$£ 20$

So Person B gets £60.
Check: is the difference between A and B actually $£ 20$?
$£ 60-£ 40=£ 20$ so yes, we are correct.

Key Terminology and Command Words

For algebraic vocabulary, see the Algebra section.
Acute An angle that measures less than 90 degrees.
Area The square units that fit "inside" a shape.
BIDMAS The order in which a calculation is carried out.

Circumference The distance around the circle.
Construct Draw accurately, usually using compasses or a protractor.
Cube Multiply by itself three times.
Decrease To lower in value.

Denominator The bottom part of a fraction.
Diameter \quad The distance across a circle that passes through the centre.
Difference Subtract one number from another "how many jumps between..."
Estimate Round all values to one significant figure before calculation.
Even \quad A number that is divisible exactly by 2.
Factor A number that divides exactly into another number.
HCF The highest common factor of two or more numbers.

Horizontal Easily described as "side to side".
Increase To go up in value.
Indices \quad Referring to powers. E.g. 3^{2} has an index (or power) of 2.
Integer A whole number.
Inverse \quad The opposite of something, e.g. the inverse of multiply is divide.
Justify Give a reason and show mathematically why something is true.
LCM The lowest common multiple (times tables) of two or more numbers.
Mean \quad Add all of the numbers up and divide by how many numbers there are.

Median The middle value once the numbers have been put in order.
Mode \quad The most common item or value in a list.
Multiple \quad The times tables of a number.
Numerator The top part of a fraction.
Obtuse An angle measuring more than 90 degrees but less than 180 degrees.
Odd A number that isn' \dagger divisible by 2.
Operation $\quad+,-$, or \div
Parallel Two lines that will never meet.

Perimeter The distance around the outside of a shape.
Perpendicular At a right angle to.
Polygon A closed sided shape with straight edges.
Power Also known as the "index". E.g. 3^{2} is read as 3 raised to the power of 2.
Prime A number that has exactly two factors; one and itself.
Product To multiply. E.g. the product of 5 and 8 is $5 \times 8=40$.
Radius \quad The distance from the centre of a circle to the edge.
Range \quad The highest value minus the lowest value.
Reflex An angle bigger than 180 degrees.
Regular \quad Refers to a shape where all angles are equal, and all lengths are equal.
Root e.g. square root. $\sqrt{4}=2$
Show that... When given an answer, show how that answer is achieved with method.
Sig fig See section "Rounding to Significant Figures" above.
Square \quad To multiply something by itself. e.g. $5^{2}=5 x 5=25$.
Sum \quad Add together, e.g. the sum of 5 and 8 is $5+8=13$.
Vertical Easily described as "top to bottom".

